Our Pump Finder provides a curated list of universal and application-specific fuel pumps based on several inputs.
On the Pump Finder page, simply enter the following details on your vehicle and the search results will provide you a list of pump options:
You can either find a downloadable PDF for your part number on the product page or you can search your part number on the Installation Instructions page.
Two factors effect an electric fuel pump’s rated ability to support horsepower, one is the max pressure the fuel pump has to produce and two is the HP consumed by any engine accessories ahead of the flywheel. Higher fuel pressures created by “boost reference” fuel systems, common to forced induction EFI engines, force electric pumps to slow down against the increasing load, reducing available fuel pump volume. A forced induction engine also requires more fuel to support HP developed in the cylinder but lost to the work required to drive the compressor helping to make the extra power.
For example, supercharged engines consume HP to drive the turbine via a belt. Turbo chargers trap exhaust heat and flow to drive the compressor, creating what are termed “pumping losses” caused by exhaust back pressure working against the piston on the exhaust stroke.
Any electric fuel pump must be de-rated for forced induction because it will support less flywheel HP. It’s interesting to note that things aren’t always what they seem; if you add back the HP lost to the compressor, the pump actually supports the same cylinder HP for forced induction as it does naturally aspirated, just less of what is developed in the cylinder remains to be measured at the flywheel.
New pump development is itself an exhausting process that includes prototyping and testing, then more prototyping and testing, but once we know we can deliver a pump that will meet the objective and may be moved to durability and field testing, we begin a parallel effort to develop the supporting components required to create a complete fuel system around that pump. Everything from pre and post filters to port sizes and port fittings are considered. We engineer and develop a specific regulator that will maximize efficiency of that pump, enabling the buyer to extract every possible ounce of available flow while maintaining the desired pressure. The result is a complete fuel system with specific capabilities.
What does this mean to you? It takes the guess work out of choosing the right fuel delivery, and THAT makes your life easier in a meaningful way. All you have to do is determine what pump will meet your requirements. From there the system is defined and either available under one part number or outlined with respect to the individual components you need in our easy to use “Aeromotive Power Planner”. The “Power Planner” is available in our catalog and on our website at www.aeromotiveinc.com, at the top of any page, just click on the “Power Planner” link and choose the Carbureted Power Planner with one more click.
The “Power Planner” outlines fuel systems one at a time, starting with the lowest horsepower combinations and, as you scroll down, covering applications capable of increasing levels of horsepower. The two main questions you need to answer are simply “what will the engine’s peak horsepower be?”, and “What will the fuel system require for fuel pressure?”, including base pressure and boost reference if that is required. If you’re not sure of what your engine will make power-wise, there are numerous magazines and internet forums where you can research similar combinations to the one you’re building, that have already been dyno tested, to get you solidly in the ballpark.
It’s a good idea to be somewhat optimistic when estimating horsepower, or if you prefer, build in a little head room, just to make sure you cover the bases completely. Keep in mind, all ratings provided by Aeromotive are based on flywheel horsepower. Horsepower at the tire must be corrected up to flywheel horsepower. It’s safe to allow 15% drive line losses, so you can divide wheel horsepower numbers by 0.85 to get the flywheel estimate. For example, 500 WHP divided by 0.85 equals 588 FWHP.
Every Aeromotive fuel pump is rated for horsepower capability on its product page in our catalog, and on our website. You will find several horsepower ratings that apply to various engine combinations, naturally aspirated to forced induction, and allowances are made for carbureted and fuel injected engines where a given pump is capable of doing both.
It’s a common misconception for people to think that a particular fuel pump “puts out” a specific pressure. Though some pumps are pressure limited, which we’ll explain in a moment, the fact is no pump “puts out” any pressure. What a pump does do is put out flow. And what it needs to do is put out the necessary flow when regulated up to the required pressure for a particular application.
All electric pumps have a flow curve that changes with pressure. Not all companies advertise or provide these flow curves, which can make evaluating a fuel pump for a particular application virtually impossible. At Aeromotive we understand that a pump’s flow curve across a range of pressure reveals crucial performance characteristics about any pump, so when we quote flow, we always provide the test pressure and voltage. When you read how much an A1000 flows at 43 PSI, you’re being given vital information that is in the proper context; how much flow at what pressure. This doesn’t mean the pump “puts out” 43 PSI.
There are basically two types of pumps used in automotive fuel systems, those that are pressure limited, for use with a static (non bypass) regulator, and those that are not pressure limited, and which must be used with a dynamic (bypass style) regulator. Pressure limited pumps are almost all intended for use with carbureted engines, and the static style carburetor regulators designed for 3-12 PSI. What happens with a pump like this is that when the flow is blocked by the regulator to prevent high pressure from flooding the carburetor, a bypass at the pump opens to prevent pressure from going too high at the pump.
Some pressure limited pumps have an internal bypass (usually the lower flow, street/strip type) that opens around 15 PSI and allows the flow from the outlet port to travel through an internal passage in the pump, back to the inlet port. The higher flow, racing specific pumps often feature an external bypass, set for 18-24 PSI. Here a return line is run from the fuel pump back to the top of the fuel tank so that when the maximum pressure is reached the excess flow returns to the tank. Either way, these pumps are not intended for use in high pressure, EFI systems, even if the bypass is blocked to force pressure higher.
Many Aeromotive pumps are of the “non pressure limited” type, including the A1000 for example. This type of pump cannot be used with a static (non bypass) regulator, because to stop the flow coming from the pump completely would drive fuel pressure to 100-PSI or higher, creating excessive current draw and heat, and potentially damaging the pump permanently. Non pressure limited pumps can be operated in both low (carbureted) and high (EFI) pressure systems, as long as the proper bypass regulator is used.
Aeromotive, adjustable bypass regulators are available to use with non pressure limited pumps that can handle flow from small to large pumps, and that can create and maintain pressure from carbureted to EFI levels. Most EFI regulators are adjustable from as low as 30 PSI to as high as 70 PSI, so those who want 43 PSI for the fuel rail will be able to use the same pump and regulator combination as those who want 60 PSI. Just be sure the pump provides the necessary flow at the pressure you need.